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Usage data at a high-traffic web site can expose information about
external events and surges in popularity that may not be accessible
solely from analyses of content and link structure. We consider
sites that are organized around a set of items available for
purchase or download, consider, for example, an e-commerce site
or collection of online research papers, and we study a simple
indicator of collective user interest in an item, the batting average,
defined as the fraction of visits to an item’s description that result
in an acquisition of that item. We develop a stochastic model for
identifying points in time at which an item’s batting average
experiences significant change. In experiments with usage data
from the Internet Archive, we find that such changes often occur
in an abrupt, discrete fashion, and that these changes can be
closely aligned with events such as the highlighting of an item on
the site or the appearance of a link from an active external referrer.
In this way, analyzing the dynamics of item popularity at an active
web site can help characterize the impact of a range of events
taking place both on and off the site.

Large information repositories are often studied not just in
terms of their content, but also in terms of the structures that

grow up around this content. In the scientific literature, the
network of citations provides a clear example of this type of
structure; it can supplement the text of published papers by
highlighting work that others have found to be important. This
principle extends naturally to the information contained in web
sites as well; hyperlinks on the web provide a powerful frame-
work for organization and analysis that parallels the use of
citations and cross-references in other media (for an example,
see ref. 1).

Web sites and other online documents, however, can be
further annotated with information typically not available in
traditional print sources: the patterns of usage generated by
visitors to the site. At the most basic level, explicit analysis of a
web site’s usage can play a role similar to that of hyperlink
analysis; for instance, uncovering parts of the site that have
attracted large numbers of visitors can help to highlight impor-
tant content for future users. But usage data are considerably
more dynamic and volatile than link structure; usage changes
quickly in response to external events and surges of popularity,
many of which are significant but too transient to leave behind
a long-term mark on the site. With effective means for analyzing
this usage dynamics, we can thus characterize a web site along a
dimension that neither content nor link structure is able to
capture.

Our work is based on an analysis of usage data from the
Internet Archive (www.archive.org), which maintains a large
collection of downloadable media, including movies, music, and
books, as well as snapshots of the web itself reaching back to its
early history. Our approach, however, is applicable to a wide
range of web sites offering items that users may or may not want
to acquire (e.g., for sale or download). Such sites typically
contain three distinct types of content: navigational structure,
item descriptors (an individual page associated with each item,
providing a description of the item together with the option to
acquire it), and the items themselves. This kind of navigation–

description–acquisition structure is common in e-commerce
sites, such as amazon.com, and in online libraries or research
paper collections such as the e-print arXiv (2) and CiteSeer (3).
In the case of the Internet Archive, this structure is manifested
through a ‘‘details’’ page for each media item, containing a
summary of the content together with user reviews and links for
downloading the item.

In the following sections, we develop methods for modeling
and tracking the popularity of items at web sites with this
structure. We introduce the batting average, the proportion of
visits that lead to acquisitions, as a measure of an item’s
popularity, and we illustrate why it is a useful complement to
traditional measures such as visit or acquisition counts alone. We
then develop a stochastic model of how the batting average varies
over time, and we use it to examine the level of interest in certain
items in the Internet Archive. We find that many of the changes
in item popularity have a discrete nature, they occur suddenly,
and their onset can be related to specific events taking place
either on or off the site. Further, we argue that knowledge of
these changes and the events surrounding them can be of value
both to users of the site and the site’s administrators.

The Batting Average of an Online Item
There are several quantitative ways to try to capture an item’s
popularity. Consider, first, ranking each item in order of its
acquisition count, the number of times it has been acquired (e.g.,
downloaded or purchased). Many web sites offer this type of
ranking to users in the form of a ‘‘most popular’’ list. Such lists,
while clearly providing useful feedback, suffer from two intrinsic
(and related) problems: they typically change very little over
time, because the top items on these lists build up large counts
that are relatively impervious to localized trends, and they are
self-reinforcing in the sense that users are often driven to look
at an item simply because it appears on one of these lists.

We have been studying an alternative measure, the batting
average; although still simple to define, it exhibits a more
complex dynamics. On any web site with a description–
acquisition structure, the batting average of an item is defined as
the number of acquisitions of the item divided by the number of
visits to its description. Thus, the batting average can be thought
of as a kind of inherent ‘‘appeal’’ of an item, the probability that
a visit will lead to acquisition, averaged over all visitors to the
item’s description.

Both the acquisition count and the batting average have the
potential to change significantly when an item is highlighted in
some way, either on the site or by an active off-site referrer, and
is thereby exposed to a larger or different population of users.
The way in which these two measures generally experience
change, however, is quite different. The acquisition count never
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decreases with increasing exposure of the item, and the magni-
tude of the increase in large part reflects the extent of the
exposure. The batting average, on the other hand, may go up or
down when the item is exposed to a new population, depending
on whether this new population contains a larger or smaller
fraction of users who are interested in acquiring it; in this way,
the change to the batting average reflects something about the
interests of the new population relative the item’s standard set
of visitors. More generally, the dynamics of an item’s batting
average over time can help one to dissect the mix of users who
encounter and evaluate it at different times and for different
reasons.

As one concrete indication of the different dynamics exhibited
by the acquisition count and the batting average, we consider the
effects of reporting these quantities as feedback to users. Be-
cause its media collections became public, the Internet Archive
site has featured continuously updated lists of the items with the
highest acquisition count, displayed separately for movies, audio,
and texts. Beginning in November 2002, on the same pages, lists
of the items with the highest batting averages (corrected for
small sample sizes) were added. We find that the lists of most
acquired items change very infrequently, reflecting their self-
reinforcing or ‘‘rich-get-richer’’ character: users are driven to
look at (and then often acquire) these items simply because of
their presence on the lists, which increases their acquisition
count. The lists of items with the highest batting averages, on the
other hand, are significantly more ‘‘turbulent’’: when an item
enters such a list, its visibility on the site increases significantly,
and a broader population of users is driven to look at its
description. At this point the item’s batting average can remain
stable or increase if it is of mainstream interest or else the batting
average will drop and the item will rapidly leave the top-ranked
list. Fig. 1 shows the number of days in each month (November
2002 through April 2003) when the ‘‘top-5 acquired’’ and ‘‘top-5
batting averages’’ lists experienced a change. The greater tur-
bulence of the batting average list is reflected in the fact that it

changes every 2–3 days on average, as opposed to every couple
of weeks.

We have also observed that the distribution of acquisition
counts across all items at the Internet Archive has a heavy-tailed
distribution, whereas the distribution of batting averages does
not. Heavy-tailed distributions are widely observed in settings
that are dominated by rich-get-richer dynamics (4); this is a
further quantitative reflection of the contrast between acquisi-
tion count and batting average.

Tracking Interest over Time
We have argued that aggregate interest in an item, as measured
by the batting average, may change whenever the item is exposed
to a new mix of users. Moreover, if we think about the potential
causes of an item’s increased exposure, many of these are not
gradual trends but discrete events, occurring at precise points in
time. Consider, for example, the effect of highlighting an item on
a top-level page on the site, or the effect of a new link from an
active off-site referrer; this highlight or hyperlink first appears at
a specific moment, and the item’s batting average is particularly
susceptible to change at such moments. With a means for
identifying discrete changes in the batting average, we can assess
the extent of this phenomenon in practice and automatically
identify the most significant events that affect interest in each
item in the collection.

Thus, we need a way to meaningfully express the ‘‘instanta-
neous batting average’’ of an item at any point in time, so that
we can identify the moments when this quantity changes. De-
fining such an instantaneous measure is a bit subtle, because at
any one particular point in time, we simply have information
about a single user’s decision to download the item or not. One
simple approach would be to average the results of a number of
consecutive user visits, obtaining a batting average over a
‘‘sliding window’’ in time, but as we discuss further below, we
have found that this is not effective at localizing a small set of
changes caused by external events. Instead, we make use of the
stochastic modeling framework of hidden Markov models
(HMMs) (5), explicitly representing the underlying download
probability as a ‘‘hidden state’’ in the process, and identifying the
moments when this state changes.

To motivate this, consider first a simple model of an item’s
batting average: a sequence of users visit the item’s description,
and each user independently decides whether to acquire the item
by flipping a coin of bias b (which, over a long enough sequence
of users, will be approximately equal to the observed batting
average.) We now consider a richer model in which the under-
lying bias of the coin can change. Thus, there is an underlying set
of possible coin biases 0 � b1 � b2 � . . . � bn � 1, which we
view as the potential states of the process. Users arrive at discrete
time steps t � 1, 2, . . . , T and at time t, the decision to download
is made with a bias of bit (where 0 � it � n � 1). After each step,
there is some probability that the bias will change; specifically,
there is a function �(�, �) so that, if the current bias at visit t is b,
it will change to b� at visit t � 1 with probability � (b, b�).

The decision by each of the T visitors to download the item or
not can be encoded as a length-T sequence d � (d1, d2, . . . , dT)
of 0s and 1s. Our goal is to find the corresponding sequence of
biases b � (bi1, bi2, . . . , biT) that is most likely given download
sequence d; in other words, we want to maximize Pr[b�d]. By
Bayes’ theorem, this is equivalent to maximizing Pr[d�b]�Pr. The
first term decomposes into a sequence of independent download
decisions, Pr[d�b] � �t�1

T Pr[dt�bit], where each factor is simply
the probability of a 0 or 1 given the bias: Pr[1�bit] � bit and
Pr[0�bit] � 1 � bit. The second term factors into a sequence of
probabilistic transitions according to our model, Pr[b] �
�t�1

T�1�(bit, bit�1). Finally, it is useful to take the negative loga-
rithm of the expression, so that we are seeking to minimize a sum
rather than maximize a product:

Fig. 1. The number of changes per month in top audio (a) and movie (b)
items: ranking by batting average versus ranking by downloads.
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�log(Pr[d�b]�Pr[b])

� �
t�1

T � � log bit if dt � 1
� log �1 � bit

	 if dt � 0 � � �
t�1

T�1

�log �(bit
, bit�1

).

[1]

In our case, we use a set of biases {bi} that range from 0.10 to
0.90 in increments of 0.01. We limit the range of biases to avoid
values near 0 and 1, where the first term of the summation
(corresponding to Pr[1�bit] � bit and Pr[0�bit] � 1 � bit) becomes
unbounded. We choose a step size of 0.01 because empirically a
smaller step size of 0.001 yields essentially the same results,
whereas a larger step size of 0.1 fails to distinguish a number of
events.

The quantity �log �(b, b�) in the second term of Eq. 1 can be
viewed as a state transition cost (because we seek to minimize
it), and we model it as increasing linearly in relation to the
distance between the biases b and b�:

�log �(b, b�) � min(k1�b � b��, k2�b � b�� � k3),

where the ki are positive constants with k1 
 k2; these constants
are chosen to yield a small number of state transitions per item
(�10–20) in practice. The rationale for the two-slope model
underlying the state transition cost is that we want to be able to
detect sudden large changes in bias that result from discrete
external events such as adding a new link, while at the same time
not having the model drift from one bias to another and back
again. Thus the higher slope for small changes encourages the
system to stay in a given state rather than bouncing around, but
at the same time large changes in bias do not incur much more
of a penalty than moderate changes. This is a standard kind of
‘‘truncated model’’ used in robust statistics. Many other cost
functions, including quadratic (which would correspond to
Gaussian distributed transition probabilities) could also be used
here.

Intuitively, the two terms in Eq. 1 reflect opposing forces in
our tracking of the batting average over time: the first term seeks
to produce a sequence of biases that accurately follows each
individual download decision, whereas the second term seeks to

produce a sequence of biases that is relatively constant, reflect-
ing the notion that discrete changes happen only rarely. Mini-
mizing this expression thus corresponds to a balance between
these two qualitative goals. The standard Viterbi algorithm (5)
can find the state sequence minimizing Eq. 1 in time O(Tn2).
Because we are dealing with extremely long sequences and using
a relatively large set of biases, this running time would be
prohibitive; to avoid this problem, we use a recently developed
algorithm that exploits the structure of the state transition costs
to perform the minimization in time O(Tn) (6, 7).

The result of this computation is a sequence of biases that
reflects our best estimate of the instantaneous batting average
across the full sequence of user visits. With a setting of param-
eters under which this quantity changes infrequently, these
discrete moments of change become natural breakpoints around
which to understand the evolution of interest in the item.
Because of the large set of possible biases considered by the
algorithm, we find that the changes tend to correspond closely to
recognizable events involving the site; in contrast, models with
a sparser set of possible biases (i.e., with a smaller value of n)
produce state transitions that do not track these events well. We
have also considered the use of stochastic models for analyzing
the rate of item downloads and the rate of visits to item
description pages. This approach is analogous to our stochastic
analysis of batting averages, but with several differences. First,
because download and visit rates are measured in users per unit
time, it is natural to use a probabilistic waiting-time model; such
a model is more difficult to meaningfully discretize into states
than the biases in our coin-flipping model for batting average,
which naturally reside in the interval [0,1]. Second, as discussed
in the previous section, changes (captured as state transitions) in
the batting average tell us about the varying interest level of the
underlying population in a way that state transitions correspond-
ing to spikes in the download or visit rate alone do not. For these
reasons, we leave the stochastic analysis of download and visit
rates outside the scope of the present article.

Before we analyze the set of batting average state transitions
systematically, it is useful to consider a single item in some detail,
to get a qualitative sense for what one finds from temporal
changes in the batting average. Thus, in Fig. 2 we plot the HMM
state for the batting average (the value of the hidden bias

Fig. 2. Tracking the batting average of What You Should Know About Biological Warfare as a function of time, using state transitions in a HMM.

5256 � www.pnas.org�cgi�doi�10.1073�pnas.0307539100 Aizen et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
25

, 2
02

1 



www.manaraa.com

variable) as a function of time for the Internet Archive’s online
copy of the 1952 civil defense film What You Should Know About
Biological Warfare. Roughly, we see that the batting average
begins at a high level (�0.38), then drops to a lower level
(�0.26), and returns to a higher level again (between 0.40 and
0.50), with the final higher period interrupted by five brief, sharp
drops.

Annotating these transitions in terms of events both on and off
the site, a clear picture of the item’s history emerges. The initial
drop to a lower level in December 2002 occurred when the item
was added to the Pick List, an unannotated list of (recom-
mended) titles on a top-level page at the Internet Archive. The
subsequent return to a higher level in February 2003 occurred
when the item was moved (a week after Colin Powell’s testimony
on biological weapons to the United Nations Security Council)
from the Pick List to the Collection Spotlight, a more extensive
means of highlighting in which the title is accompanied by a brief
description; visitors arriving at the film’s description from the
Collection Spotlight were more likely to download it than visitors
arriving from the less informative Pick List. Each of the five
subsequent sharp drops can also be closely associated in time
with an event involving the item. The first coincided with a
referring link from the discussion site forums.somethingawful-
.com and the second with a referring link from the extremely
active weblog www.reason.com�hitandrun; in each case, the
fraction of visitors arriving over these links who actually down-
loaded the film was very low. After the traffic from each of these
referrers subsided, the batting average jumped back up. The final
three drops correspond to technical failures on the site of varying
lengths, which made it impossible to download the file.

Above we mentioned that a simpler alternative to HMMs, the
computation of a sliding window of contiguous visits, is not
effective for performing a comparable localization of events.
The example we have been discussing here provides a good
illustration of some of the difficulties. Perhaps the most common
way of computing this type of sliding window is to convolve the
0–1-valued sequence d � (d1, d2, . . . , dT) with a Gaussian mask.
In other words, letting g(x) denote the Gaussian function (1�
�2�)e�x2�2�2

, we create a smoothed sequence d� � (d�1,

d�2, . . . , d�T), where d�i � j��k
k g(j)di�j for a window size k. In this

way, the smoothed quantity d�i reflects the average of nearby
elements of the original sequence d, damped by the Gaussian
multipliers.

In Fig. 3 we perform this computation with a Gaussian where
� � 250 and k � 1,000 (i.e., values are computed out to 4�).
Although the coarse shape of the plot resembles that of Fig. 2,
the overall result is much noisier, and it is not clear how to
localize particular discrete events. Larger values of � produce
plots that lose the overall shape as well, without becoming
substantially less noisy.

The standard approach for identifying change points in such
a smoothed signal would be to look for extreme points in the
discrete analogue of the first derivative, d�i�c � d�i for some
constant c 
 0, but this yields hundreds of such extrema for each
item, a quantity that does not decrease significantly even with
considerably more smoothing. To create a baseline for compar-
ison with the HMM, we thus looked at just the set of extrema of
largest absolute value in the discrete derivative, but we will show
in the following section that this still does not perform nearly as
well as the HMM at localizing the times of events involving
individual items.

In summary, the example in this section suggests that an
approach based on a HMM with a large number of underlying
states can accurately localize points of discrete change and can
capture changes in interest in an item over time scales that range
from hours to months in duration.

Aligning Changes in Interest with External Events
The crux of the example in the previous section was that
significant changes in the batting average for an active item are
often correlated with ‘‘real-world events,’’ both on and off the
site, in which this item is featured. How general is this phenom-
enon? Here, we seek to address this question systematically, by
studying the extent to which HMM state transitions can be
aligned with events that occur nearby in time. In addition to
providing an evaluation of our model’s behavior, this type of
alignment can have value for both users and administrators
of the site. It is a way of identifying, from a large collection of

Fig. 3. A noisier method of tracking the batting average for What You Should Know About Biological Warfare, based on a sliding window (Gaussian
convolution) of contiguous visits.
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candidate events, those that demonstrated an impact on user
behavior by substantially affecting the batting average of an item.
Indeed, certain significant events that were not necessarily
apparent at the time they occurred can be discovered after the
fact through the effect that they have on items’ batting averages.

Our approach is as follows. For each of the 100 most down-
loaded items on the Internet Archive, and for a period from
September 2002 to May 2003, we compute all state transitions in
the HMM defined in the previous section. We then discard those
transitions in which the state changes only by the minimum
increment of 0.01, as we are interested in detecting events that
had a substantial impact on the batting average, whereas se-
quences of the minimum-size step of 0.01 occur when the batting
average changes ‘‘smoothly’’ from one level to another without
a big jump. We call the remaining transitions (257 over all 100
items) major transitions. We then check, for each of these major
transitions, whether it occurred close to some observed event
involving the item. To construct this set of observed events, we
extract information from the Internet Archive’s usage logs and
a database that records all changes made by site administrators.
Our full set of observed events is as follows:

•The appearance or disappearance of an item from a Collec-
tion Spotlight, Pick List, or top-level list of recent user reviews.
(Each of these lists serves to highlight the item in a prominent
location on the site.)

•The appearance of a link to an item’s description from an
active off-site referrer. We define this to be the first recorded
visit from a referring URL that generated at least 100 visits total,
with at least 25 visits occurring within 48 h of the first visit.
Although these specific values are somewhat arbitrary, any
similar values would achieve the goal of selecting off-site refer-
rers that generated enough traffic to an item’s description so as
to have a potential impact on its batting average.

•The beginning or end of a technical failure on the site that
prevented file downloads. These were determined by manual
inspection of Internet Archive records and were assumed to
involve all items.

There are a total of 1,978 events in this set, over all 100 items.
Formally, we test for temporal proximity between major HMM
transitions and observed events on the site as follows. We say
that a �-hour alignment between transitions and events is a
collection of ordered pairs (r1, e1), (r2, e2), . . . , (rk, ek), where

(i) Each ri is a major transition and the corresponding ei is an
event occurring at most � hours away in time.

(ii) No transition or event occurs in more than one of the
ordered pairs.

The effect of condition i is to require the transitions to localize
events closely in time; the effect of condition ii is to prevent a
single observed event from ‘‘explaining’’ multiple major transi-
tions. Because the ideal is for major transitions to lie near
observed events, we will say that such an alignment accounts for
the transitions r1, r2, . . . rk. As a function of �, the upper curve
in Fig. 4 plots the size of the largest �-hour alignment divided by
the total number of major transitions. Thus we see, for example,
that there is a 12-h alignment that accounts for roughly half
(51.9%) of all major transitions.

To understand whether this is a significant overlap between
transitions and events, we compare it to a random baseline. That
is, approximately half of all major transitions can be accounted
for by a 12-h alignment; is it likely that if we chose a random set
of points in time, we could account for a comparable number?
We address this question with the following calculation. There
are 100 items under consideration, and we are focusing on a
period of 260 days for each; so if we lay the time periods for each
item end to end, we get an interval of 26,000 days, which is
624,000 h. Each of the 1,978 observed events ‘‘carves out’’ an
interval of 2� h in this timeline; so if we assume that none of these
intervals overlap (which only helps the random baseline), then
the probability a random point in time lies within � hours of one
of the observed events is at most (2�)(1,978)�(624,000)
�0.00634�. Thus, the expected fraction of random points that lie
sufficiently close to an observed event is at most 0.00634�, and
hence the ratio of the largest �-hour alignment to the total

Fig. 4. As a function of a time threshold �, the upper curve plots the size of the largest �-hour alignment between major HMM transitions and observed events
on the Internet Archive site, normalized by the total number of major transitions. The lower curve is a baseline for comparison: an upper bound on the
corresponding quantity, with the set of major transitions replaced by a random set of points in time.
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number of random events can be at most this large. The lower
curve in Fig. 4 shows a plot of this fraction as a function of �. Thus
we see, for example, that the maximum-size 12-h alignment will
account for at most 7.6% of a random set of points in expecta-
tion, significantly less than the 51.9% obtained for the collection
of major HMM transitions. Indeed, the probability of seeing a
12-h alignment account for 51.9% of a random sample of 257
points (the number of major transitions) is vanishingly small
(�10�60).

Thus, there is significant overlap between events and tran-
sitions. Furthermore, it appears likely that many of the major
transitions that went unexplained by observed events in fact
have natural explanations that were not included in our event
set. For example, when traffic from an active but short-lived
referrer leads to a sharp change in the batting average, there
is often a second major transition when this traffic dies down,
but we do not generally have an observed event to relate this
to. Second-order effects from referrers can be even harder to
catch, as in a link from slashdot.org to the archive’s top-level
home page in February 2003 that drove a huge amount of
traffic to the site. Certain items experienced a sudden change
in batting average just after the appearance of this external
link, because they were prominently featured on a top-level
archive page and so a fair number of users arriving from
slashdot.org went on to look at them, but no observed event
was recorded for any of these items because the referring link
was not directly to their description pages.

One conclusion from these missed explanations is in fact a
promising one: that sharp changes in an item’s batting average
can often reveal genuine and significant events that are ex-
tremely hard to identify directly, even from extensive log data.

In the previous section, we discussed the difficulties with
localizing observed events using change points in a Gaussian-
smoothed version of the 0-1 sequence of download decisions.
Continuing the notation used in that discussion, we took the set
of times at which the 257 largest absolute values occurred in the
discrete derivative d�i�c � d�i with c � 6, and computed the largest
�-hour alignment of this set with the observed events as a
function of �. (Empirically, we found that the choice of c � 6
produced the most favorable results for this method, and the
choice of the top 257 changes was made so as to produce a set
of the same size as the collection of all major HMM transitions.)
Although this alignment outperformed the random baseline
discussed above, it was significantly smaller than the correspond-
ing alignment of major HMM transitions with observed events,
across all values of �. For example, the largest 12-h alignment in
the case of Gaussian smoothing accounted for 19.5% of all
points, compared with 7.6% for a random set and 51.9% for
major HMM transitions.

As a final point of discussion, we note that we would get much
smaller numbers if we studied the converse question: what
fraction of observed events in our set occur close in time to a
major HMM transition? The point is that although we expect
major transitions to align with some observed event, we do not
necessarily expect each observed event to correlate with a
corresponding change in the HMM. This idea is consistent with
an issue addressed earlier, that certain observed events have a
measurable impact on an item’s batting average, but many do
not. Discrete changes in the batting average over time can thus
be useful in identifying the extent to which particular links and
other forms of highlighting did or did not have an impact on an
item’s popularity.

Related Work
Much of the prior work on usage data has addressed the problem
of collaborative filtering, recommending items to users based on
their pattern of past behavior on the site. Research on collaborative
filtering has developed approaches that build models of individual

users, so as to predict a user’s interest in items (8), as well as
approaches that build models of item-to-item similarity aggregated
over many users, as one sees at sites like amazon.com (9).

More closely related to the issues we consider here is recent work
on predicting purchase conversion on an e-commerce site, estimat-
ing the probability that an individual user will perform a purchase
based on his or her browsing pattern (e.g., refs. 10–12). One key
respect in which the work on purchase conversion differs from our
approach is in its emphasis on a per-user style of analysis, focusing
on a single user’s behavior across many items, as opposed to the
per-item analysis we undertake here, which considers the behavior
of many users in response to a single item.

There has also been work on usage data in the context of
information visualization, helping users explore a site by reveal-
ing the collective behavior of other users (13, 14). Our analysis
of events and their correlation with changes in batting averages
offers a way to summarize collective user behavior from a very
different perspective, and it would be interesting to see how far
these approaches could be integrated.

Finally, it is interesting to note that the success of probabilistic
models with explicit state discussed above, compared with
algorithms based on local averaging, follows a closely analogous
theme in computer vision, where Markov random field models
have gained prominence as a technique for dealing with discon-
tinuities in images (15). Our approach here is also motivated by
the use of state transitions to model discrete ‘‘bursts’’ in online
event sequences (16).

Further Directions
A site as active as the Internet Archive has events of many
different kinds impinging on it simultaneously: users view and
download items, write reviews, and post messages to discussion
boards; active external sites discuss the archive and drive traffic
to it; world events generate interest in particular items at the
archive. Our probabilistic model for identifying changes in the
batting average allows us to analyze one of these streams of
actions, the sequence of download decisions, in a principled
fashion. Our evaluation in the previous section represents a step
toward the simultaneous analysis of multiple streams of events,
through the alignment of events on the archive site with discrete
changes in the batting average.

It will be interesting to carry this style of analysis further. For
example, although we have informally discussed the notion that
an external event such as an active referrer may ‘‘cause’’ a change
in the batting average, we have refrained from trying to make the
concept of causality precise; thus our evaluation above focused
purely on proximity in time between events and transitions.
Quantifying the notion of causality more precisely is a very
natural open question and, from our experience with the data,
a difficult one, given the large number of factors that concur-
rently influence user interest in an item, and the difficulty in
isolating the contribution of these factors separately.

Finally, it is clear that tracking just the description-to-acquisition
behavior of users has already exposed a rich pattern of activity that
varies across time and subpopulations. But it would also be valuable
to look at more extensive representations of user behavior, by
tracking longer user paths through the site; this offers the chance
to make richer inferences about both group and individual user
intentions (10–12, 17–20), although it becomes correspondingly
harder to interpret the usage data. Ultimately, by considering an
increasing level of detail in the dynamics of traffic at an active web
site, we can hope to achieve more detailed insight into the collective
behavior of the crowds that congregate there.
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